Rumus Menghitung Luas Permukaan Tabung Tanpa Tutup Dan Contoh Soalnya - Pada pembahasan kali ini kita akan jelaskan materi tentang bagaimana rumus menghitung luas permukaan tabung tanpa tututp berikut contoh soalnya.
Mari langsung saja kita simak!
Daftar Isi Artikel :
Luas Permukaan Tabung
Luas permukaan tabung adalah suatu luas dari beberapa jumlah sisi yang dimiliki oleh tabung. Jumlah sisi suatu tabung sama dengan bidang pembentuk tabung. Bidang pembentuknya tersebut ada yaitu terdiri dari dua buah lingkaran yang menjadi alas dan tutupnya, serta satu buah selimut tabung yang berbentuk persegi panjang. Luas permukaan ini memiliki pengaruh terhadap besar dan kecilnya suatu tabung.
Luas Permukaan Tanpa Tutup Tabung
Luas permukaan tabung tanpa tutup adalah suatu luas permukaan yang hampir sama dengan luas permukaan tabung, hanya bedanya dari segi tutupnya saja, luas permukaan tanpa tutup tabung ini tidak ada tutupnya. Oleh karena tidak ada tutupnya, maka luas sisi tutup tabung yang berupa lingkaran tersebut tidak dihitung.
Jadi jika tabung tanpa tutup maka gambarnya kurang lebih sebagai berikut:
Rumus Luas Permukaan Tabung Tanpa Tutup
Untuk menghitung luas permukaan tabung tanpa tutup, maka kita dapat menggunakan rumusnya sebagai berikut:
L. tabung tanpa tutup = π x r2 + 2 x π x r x t
= π x r (r + 2t)
Demikianlah rumusnya, sekarang kita lanjutkan ke contoh soal dan pembahasannya.
Contoh Soal Dan Pembahasan
Soal 1:
Diketahui sebuah tabung berdiameter 10 cm dengan tinggi tabung adalah 26 cm. Berapakah luas permukaan tabung tanpa tutup tersebut?
Pembahasan:
L. permukaan tabung tanpa tutup = π x r (r + 2t)
L. permukaan tabung tanpa tutup = 3,14 x 5 x (5 x 2 x 26)
L. permukaan tabung tanpa tutup = 3,14 x 5 x (5 x 52)
L. permukaan tabung tanpa tutup = 3,14 x 5 x 57
L. permukaan tabung tanpa tutup = 894,9 cm2
Jadi, luas permukaan tabung tanpa tutup tersebut adalah 894,9 cm2
Soal 2:
Diketahui sebuah tabung berdiameter 16 cm dengan tinggi tabung adalah 28 cm. Berapakah luas permukaan tabung tanpa tutup tersebut?
Pembahasan:
L. permukaan tabung tanpa tutup = π x r (r + 2t)
L. permukaan tabung tanpa tutup = 3,14 x 14 x (14 x 2 x 28)
L. permukaan tabung tanpa tutup = 3,14 x 14 x (14 x 56)
L. permukaan tabung tanpa tutup = 3,14 x 14 x 784
L. permukaan tabung tanpa tutup = 34.464,94 cm2
Jadi, luas permukaan tabung tanpa tutup tersebut adalah 34.464,94 cm2
Soal 3:
Diketahui sebuah tabung berdiameter 20 cm dengan tinggi tabung adalah 24 cm. Berapakah luas permukaan tabung tanpa tutup tersebut?
Pembahasan:
L. permukaan tabung tanpa tutup = π x r (r + 2t)
L. permukaan tabung tanpa tutup = 3,14 x 10 x (10 x 2 x 24)
L. permukaan tabung tanpa tutup = 3,14 x 10 x (10 x 48)
L. permukaan tabung tanpa tutup = 3,14 x 10 x 480
L. permukaan tabung tanpa tutup = 15.072 cm2
Jadi, luas permukaan tabung tanpa tutup tersebut adalah 15.072 cm2
Soal 4:
Diketahui sebuah tabung berdiameter 30 cm dengan tinggi tabung adalah 36 cm. Berapakah luas permukaan tabung tanpa tutup tersebut?
Pembahasan:
L. permukaan tabung tanpa tutup = π x r (r + 2t)
L. permukaan tabung tanpa tutup = 3,14 x 15 x (15 x 2 x 36)
L. permukaan tabung tanpa tutup = 3,14 x 15 x (15 x 72)
L. permukaan tabung tanpa tutup = 3,14 x 15 x 72
L. permukaan tabung tanpa tutup = 3.391,2 cm2
Jadi, luas permukaan tabung tanpa tutup tersebut adalah 3.391,2 cm2
Soal 5:
Diketahui sebuah tabung berdiameter 46 cm dengan tinggi tabung adalah 56 cm. Berapakah luas permukaan tabung tanpa tutup tersebut?
Pembahasan:
L. permukaan tabung tanpa tutup = π x r (r + 2t)
L. permukaan tabung tanpa tutup = 3,14 x 23 x (23 x 2 x 56)
L. permukaan tabung tanpa tutup = 3,14 x 23 x (23 x 112)
L. permukaan tabung tanpa tutup = 3,14 x 23 x 57
L. permukaan tabung tanpa tutup = 87.584 cm2
Jadi, luas permukaan tabung tanpa tutup tersebut adalah 87.584 cm2
Baca Juga: